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Abstract

In this paper, a new phenomenological theory with strain gradient effects is proposed to account for the size de-

pendence of plastic deformation at micro- and submicro-length scales. The theory fits within the framework of general

couple stress theory and three rotational degrees of freedom xi are introduced in addition to the conventional three

translational degrees of freedom ui. xi is called micro-rotation and is the sum of material rotation plus the particles’

relative rotation. While the new theory is used to analyze the crack tip field or the indentation problems, the stretch

gradient is considered through a new hardening law. The key features of the theory are that the rotation gradient

influences the material character through the interaction between the Cauchy stresses and the couple stresses; the term

of stretch gradient is represented as an internal variable to increase the tangent modulus. In fact the present new strain

gradient theory is the combination of the strain gradient theory proposed by Chen and Wang (Int. J. Plast., in press)

and the hardening law given by Chen and Wang (Acta Mater. 48 (2000a) 3997). In this paper we focus on the finite

element method to investigate material fracture for an elastic-power law hardening solid. With remotely imposed

classical K fields, the full field solutions are obtained numerically. It is found that the size of the strain gradient

dominance zone is characterized by the intrinsic material length l1. Outside the strain gradient dominance zone, the

computed stress field tends to be a classical plasticity field and then K field. The singularity of stresses ahead of the crack

tip is higher than that of the classical field and tends to the square root singularity, which has important consequences

for crack growth in materials by decohesion at the atomic scale. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recent experiments have shown that materials display strong size effects when the characteristic length
scale is on the order of microns (Fleck et al., 1994; Stolken and Evans, 1998; Ma and Clarke, 1995;
McElhaney et al., 1998; Nix, 1989; Poole et al., 1996; Lloyd, 1994). The conventional plasticity theory,
however, cannot predict this size dependence because its constitutive model possesses no internal length
scale.
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In 1994, Elssner et al. measured both the macroscopic fracture toughness and atomic work of separation
of an interface between a single crystal of niobium and a sapphire single crystal. The macroscopic work of
fracture was found to be two to three orders of magnitude higher than the atomic work of separation. This
large difference between the macroscopic work of fracture and its counterpart at the atomic level was at-
tributed to plastic dissipation in niobium, i.e., there must be significant plastic deformation associated with
dislocation activities in niobium. However Elssner et al. (1994) observed that the interface between two
materials remained atomistically sharp. Meanwhile the stress level needed to produce atomic decohesion of
a lattice or a strong interface is typically on the order of 0.03 times the Young’s modulus, or 10 times the
tensile yield stress. But the maximum stress level that can be achieved near a crack tip is not larger than 4 or
5 times the tensile yield stress of metals, according to models based on conventional plasticity theories
(Hutchinson, 1997). This clearly falls short of triggering the atomic decohesion observed in the experiments
of Elssner et al. (1994). Attempts to link macroscopic cracking to atomistic fracture are frustrated by the
inability of conventional plasticity theories to model stress–strain behavior adequately at the small scales
involved in crack tip deformation.

In order to explain the size effect and the atomistically sharp crack tip in ductile niobium observed in the
experiments of Elssner et al. (1994), it is necessary to develop a continuum theory for micro-level. Fleck and
Hutchinson (1993) and Fleck et al. (1994) developed a phenomenological theory and a material length scale
was introduced from the dimensional grounds. From these theoretical developments and consequent at-
tempts at explaining experimental findings of indentation and fracture, it has been found necessary to
introduce two length parameters (Fleck and Hutchinson, 1997). One length refers to rotational gradients as
originally proposed in connection with the torsion measurements, the other scales with the stretch gradi-
ents. The latter is needed to rationalize length scale phenomena found in indentation and fracture. In 1998,
Nix and Gao started from the Taylor relation and gave one kind of hardening law for gradient plasticity.
Motivated by the hardening law, Gao et al. (1999) proposed a mechanism-based theory of strain gradient
plasticity (MSG) based on a multiscale framework linking the micro-scale notion of statistically stored and
geometrically necessary dislocations to the mesoscale notion of plastic strain and strain gradient. Huang
et al. (2000a,b) used the MSG theory to analyze several problems successfully.

All the above strain gradient plasticity theories introduce the higher-order stress which is required for
this class of strain gradient theories to satisfy the Clausiius–Duhem thermodynamic restrictions on the
constitutive model for second deformation gradients (Gurtin, 1965a,b; Acharya and Shawki, 1995). In
comparison, no work conjugate of strain gradient has been defined in the alternative gradient theories
(Aifantis, 1984; Zbib and Aifantis, 1989; Muhlhaus and Aifantis, 1991) which represent the strain gradient
effects in terms of the Laplacian of effective strain. Retaining the essential structure of conventional
plasticity and obeying thermodynamic restrictions, Acharya and Bassani (1995) conclude that the only
possible formulation is a flow theory with strain gradient effects represented as an internal variable, which
acts to increase the current tangent-hardening modulus.

Shizawa and Zbib (1999) developed a thermodynamical theory of gradient elastoplasticity by intro-
ducing the concept of dislocation density tensor.

In 2000(a), Chen and Wang established a new hardening law based on the incremental version of
conventional J2-deformation theory, which allows the problem of incremental equilibrium equations to be
stated without higher-order stress, higher-order strain rate nor extra boundary conditions.

As direct application, strain gradient plasticity theory has been used to investigate fracture of materials.
Huang et al. (1995, 1997, 1999), Xia and Hutchinson (1996), Wei and Hutchinson (1997), Chen et al. (1998,
1999) and Chen and Wang (2000b, 2001) have investigated the asymptotic field near a crack tip as well as
the full-field solution. It is established that, for the couple stress theory of strain gradient plasticity (Fleck
and Hutchinson, 1993, Fleck et al., 1994, Chen and Wang, 2002), the stress level near a crack tip is not
significantly increased as compared to that in classical plasticity. This is because the effect of stretch gra-
dients, which is important near a crack tip, has not been accounted for. In order to incorporate this effect,
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Chen et al. (1999) have used the theory of Fleck and Hutchinson (1997) to analyze the crack tip field.
Indeed, stretch gradients can elevate the stress level near a crack tip, as also observed in steady-state crack
propagation (Wei and Hutchinson, 1997). However, Chen et al. (1999) have shown that the asymptotic
crack tip field in phenomenological strain gradient plasticity gives an incorrect, compressive stress traction
ahead of a mode I crack tip. This is physically unacceptable since these compressive stress traction are
clearly against our physical intuition, and are opposite to those in classical K field, HRR field, and the
asymptotic crack tip field in the couple stress theory of strain gradient plasticity (Huang et al., 1995, 1997;
Xia and Hutchinson, 1996; Chen and Wang, 2000b). Shi et al. (2000) investigated the structure of as-
ymptotic crack tip fields associated with the developed theory of MSG plasticity and the result is the crack
tip field in MSG plasticity does not have a separable form of solution.

In this paper, we investigate the plane strain mode I crack tip field using the new strain gradient theory,
in which the rotation gradient and the stretch gradient are considered and couple stress that is work
conjugate to the rotation gradient is introduced. The essential structure of the incremental version of
conventional couple stress deformation theory is retained. Since the theory is in the incremental version, the
asymptotic analysis is not convenient and finite element method is used to provide the near-tip stress and
strain distributions for mode I crack tip field. The new strain gradient theory is given in Section 2. Nu-
merical formulations with strain gradient effects are given in Section 3. Finite element results for crack tip
fields in an elastic-power law hardening solid are shown in Section 4. Detail discussion is given in Section 5.

2. The new strain gradient theory

In fact, the present new strain gradient theory is the combination of the strain gradient theory proposed
by Chen and Wang (in press) and the hardening law given by Chen and Wang (2000a). It preserves the
essential structure of the incremental version of conventional couple stress deformation theory and no extra
boundary value conditions beyond the conventional ones, are required. No higher-order stress or higher-
order strain rates are introduced either. The key features of the new theory are that the rotation gradient
influences the material character through the interaction between the Cauchy stresses and the couple
stresses; the stretch gradient measures explicitly enter the constitutive relations only through the instan-
taneous tangent modulus and the boundary value problem of incremental equilibrium is the same as in the
conventional theories. The tangent-hardening modulus is influenced by not only the generalized effective
strain but also the effective stretch gradient.

2.1. Generalized strains

In a Cartesian reference frame xi, the strain tensor eij and the stretch gradient tensor gð1Þ
ijk (Smyshlyaev

and Fleck, 1996) are related to the displacement ui by

eij ¼ 1
2
ðui;j þ uj;iÞ ð1Þ

and

gijk ¼ uk;ij ð2Þ

g0
ijk ¼ gijk � 1

4
ðdikgjpp þ djkgippÞ ð3Þ

gs
ijk ¼ 1

3
ðg0

ijk þ g0
jki þ g0

kijÞ ð4Þ

gð1Þ
ijk ¼ gs

ijk � 1
5
ðdijg

s
kpp þ djkg

s
ipp þ dkig

s
jppÞ ð5Þ
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The rotation gradient can be defined as the curvature tensor, which is related with the micro-rotation
vectors xi,

vij ¼ xi;j ð6Þ

2.2. Effective rotation and stretch gradients

The effective strain is defined as

ee ¼
ffiffiffiffiffiffiffiffiffiffi
2
3
e0ije

0
ij

q
ð7Þ

The effective rotation gradient ve is defined as

ve ¼
ffiffiffiffiffiffiffiffiffiffiffi
2
3
vijvij

q
ð8Þ

The effective stretch gradient g1 is

g1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1Þ
ijk g

ð1Þ
ijk

q
ð9Þ

2.3. Constitutive equations

There are a lot of works about couple stress theory, such as the works of Toupin (1962), Mindlin (1963,
1964), Schaefer (1967) and Eringen (1968). Specially, Green et al. (1968) proposed a dipolar theory of
plasticity in the presence of simple force and stress dipoles. Also Naghdi and Srinivasa (1993, 1994) de-
veloped a Cosserat theory with three directors and solved problems involving the evolution of dislocations.
All these theories are based on a reduced couple stress theory model, in which the micro-rotation vectors xi

equals to the material rotation vector hi and h � ð1=2Þcurlu. Then the relative rotation tensor aij vanishes,
where aij is defined as aij ¼ eijkxk � ðuj;i � ui;jÞ=2 ¼ eijkðxk � hkÞ.

The new strain gradient deformation theory proposed here is based on the framework of general couple
stress theory and is adapt to the real materials consisting of jillion discrete micro-particles (atoms, mo-
lecular or ions). The size of these particles is extremely small and about 0.3 nm. An idealized model for such
kind of material is that the size of the particles is infinite small and the materials are full of these particles.
Each particle has six degrees of freedom, i.e., three displacement vector and three micro-rotation vector.
The micro-rotation vector x, which is the sum of the material rotation vector h plus the particle relative
rotation vector with respect to the material, is an independent quantity with no direct dependence upon u,
i.e. x 6¼ h, so that the relative rotation tensor a is not equal zero, which is different from other existing
theories.

We postulate that the strain energy density w depends only upon the strain tensor e and the curvature
tensor v (Chen and Wang, in press), i.e. the relative rotation tensor a has no contributions to the strain
energy density w. It follows

sij ¼
ow
oaij

¼ 0 ð10Þ

where sij is the anti-symmetric part of Cauchy stress and the work conjugate of the relative rotation tensor
a. In the following sections, the symmetric part of Cauchy stress is called Cauchy stress directly.

The deviatoric part sij of Cauchy stress and deviatoric part m0
ij of couple stress are defined as the work

conjugates of e0ij, v0
ij respectively; rm and mm are defined as the work conjugates of em and vm respectively,

giving
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dw ¼ sijde0ij þ m0
ijdv0

ij þ rmdem þ mmdvm ð11Þ

where sij � rij � ð1=3Þdijrkk and m0
ij � mij � ð1=3Þdijmkk.

Eq. (11) enables one to determine sij, m0
ij, rm and mm in terms of the strain and curvature states of the

solid as

sij ¼
ow
oe0ij

; m0
ij ¼

ow
ov0

ij
; rm ¼ ow

oem
; mm ¼ ow

ovm
ð12Þ

According to the work by Fleck and Hutchinson (1993) and Fleck et al. (1994), it is mathematically
convenient to assume that the strain energy density w depends only upon the single scalar strain measure Ee,
where

E2
e ¼ e2e þ l2csv

2
e ð13Þ

where lcs is an intrinsic material length, which reflects the size effects of the rotation gradient on the material
behaviors.

Re is the work conjugate of Ee and defined by

Re ¼
dwðEeÞ
dEe

ð14Þ

Then Eq. (12) can be written as

sij ¼
2Re

3Ee
e0ij; m0

ij ¼
2Re

3Ee
l2csv

0
ij; rm ¼ Kem; mm ¼ K1l2csvm ð15Þ

where

Re ¼ ðr2
e þ l�2

cs m
2
eÞ

1=2 ð16Þ

and

r2
e ¼ 3

2
sijsij m2

e ¼ 3
2
m0

ijm
0
ij

e2e ¼ 2
3
e0ije

0
ij v2

e ¼ 2
3
v0
ijv

0
ij

(
ð17Þ

and K is the volumetric modulus and K1 is called the bend-torsion volumetric modulus.

2.4. New hardening law

The hardening relationship in conventional plasticity theory can be expressed as following

re ¼ AðeeÞ ¼
dwðeeÞ
dee

ð18Þ

and the incremental form of Eq. (18) is

_rre ¼ A0ðeeÞ _eee ð19Þ

where A0ðeeÞ is the tangent-hardening modulus in the incremental version of conventional J2-deformation
theory.

While the stretch gradient is not considered, the relation between Re and Ee in this paper is taken as

Re ¼ R0En
e ; Re P rY

Re ¼ 3lEe; Re < rY

�
ð20Þ
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While the stretch gradient is considered, the hardening strength is related with not only the density of
statistically stored dislocation but also the density of geometrically necessary dislocation. Instructed by this
idea, the new incremental hardening relationship similar to that in Chen and Wang (2000a) instead of
Eq. (20) is proposed

_RRe ¼ A0ðEeÞð1þ l1g1
Ee
Þ1=2 _EEe ¼ BðEe; l1g1Þ _EEe Re P rY

_RRe ¼ 3l _EEe Re < rY

(
ð21Þ

where AðEeÞ ¼ R0En
e , BðEe; l1g1Þ is the hardening function including the effect of strain gradient; g1 is the

effective stretch gradient defined in Eq. (9). l is the shear modulus and l1 is the second intrinsic material
length, which reflects the stretch gradient.

On each incremental step, both the effective strain ee and the effective stretch gradient g1 can be obtained
from the updated displacement fields; the effective rotation gradient ve can be obtained from the updated
rotation fields. Hence g1 is only a given parameter in Eq. (21) and it does not invoke higher-order stress or
higher-order strain rates.

2.5. Incremental constitutive relation

According to Eq. (15), the constitutive relations of the deformation theory are

rij ¼ sij þ rmdij ¼
2Re

3Ee
e0ij þ Kemdij ð22Þ

mij ¼ m0
ij þ mmdij ¼

2Re

3Ee
l2csv

0
ij þ K1l2csvmdij ð23Þ

While the stretch gradient is considered, the new hardening law (21) is in the incremental form, which
ensures that there is no higher-order stress or higher-order strain rate introduced. In order to solve the
crack tip field using the new strain gradient theory and the new hardening law, the constitutive relations
must be in the incremental form also. From Eqs. (22) and (23), we obtain

_rrij ¼ 2l _ee0ij þ K _eemdij;

_mmij ¼ 2ll2cs _vv
0
ij þ K1l2cs _vvmdij;

Re < R0

8<
: ð24Þ

_rrij ¼ 2Re
3Ee

_ee0ij þ 2 _RRe
3Ee

e0ij � 2Re
3E2

e
e0ij _EEe þ K _eemdij;

_mmij ¼ 2Re
3Ee

l2cs _vv
0
ij þ 2 _RRe

3Ee
l2cs _vv

0
ij � 2Re

3E2
e
l2csv

0
ij
_EEe þ K1l2cs _vvmdij;

Re P R0

8<
: ð25Þ

3. Numerical formulation with strain gradient effects

In this section, the finite element formulations are presented for the strain gradient deformation theory.
The principal of virtual work requiresZ

V
ðrij deij þ mij dvijÞdV ¼

Z
S
ðtk duk þ qk dxkÞdS ð26Þ
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where V and S are the volume and surface of the material, respectively. The virtual strains deij are related to
the virtual displacements duk via Eq. (1) and dvij are related to the virtual rotation vector dxk. tk is surface
stress traction and qk is surface torque traction.

The displacement field can be interpolated by the element shape functions N and the nodal displace-
ments. Similarly, the micro-rotation field can be interpolated by the element shape functions N and the
nodal rotation vectors. The strains and strain gradients can be obtained from kinematic relations Eqs. (1),
(2) and (6). The stresses are then obtained via the constitutive law Eq. (22). The nodal displacements and
rotation vectors have to be solved incrementally due to the new incremental hardening law, i.e. Eq. (21).
Therefore, the nodal displacements and the rotation vectors are solved for each loading step by rewriting
the principle of virtual work Eq. (26) about the current solution as

Z
V
ðDsij de0ij þ Drm dekk þ Dm0

ij dv0
ij þ Dmm dvkkÞdV �

Z
S
ðDtk duk þ Dqk dxkÞdS

¼ �
Z
V
ðsij de0ij þ rm dekk þ m0

ij dv0
ij þ mm dvkkÞdV þ

Z
S
ðtk duk þ qk dxkÞdS ð27Þ

where the superscript prime denotes the deviatoric quantities, D on the left-hand side stands for increments,
whereas the right-hand side involves the current quantities.

3.1. The nodal degrees of freedom

Due to the independent parameter xi is introduced in addition to the displacement ui in the present
strain gradient theory, which is different from the theory proposed by Fleck and Hutchinson (1993), one
node has six degrees of freedom. For a 2D plane case there are three degrees of freedom, i.e. uix, uiy and xi.
The displacement field and the rotation vector field can be obtained through the shape function and the
nodal displacement and nodal rotation vectors, i.e.

ux ¼
Xn

i¼1

Niuix ð28Þ

uy ¼
Xn

i¼1

Niuiy ð29Þ

x ¼
Xn

i¼1

Nixi ð30Þ

3.2. The stiffness matrix D

It is noted that this kind of strain gradient theory belongs to the non-linear elastic problem. While the
current flow stress Re is less than the yield stress rY , i.e. the material is in the linear elastic state, the elastic D
matrix is the same as the classical one. While the current flow stress Re is larger than the yield stress rY , D
matrix is
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D11 ¼ K þ 4Re
9Ee

þ 4
81E2

e
ð2exx � eyyÞ2 A0ðEeÞ 1þ l1g1

Ee


 �1=2

� Re
Ee

� 


D12 ¼ K � 2Re
9Ee

þ 4
81E2

e
ð2exx � eyyÞð2eyy � exxÞ A0ðEeÞ 1þ l1g1

Ee


 �1=2

� Re
Ee

� 


D13 ¼ 2
27E2

e
ð2exx � eyyÞcxy A0ðEeÞ 1þ l1g1

Ee


 �1=2

� Re
Ee

� 


D14 ¼ 4l2

27E2
e
ð2exx � eyyÞvzx A0ðEeÞ 1þ l1g1

Ee


 �1=2

� Re
Ee

� 


D15 ¼ 4l2

27E2
e
ð2exx � eyyÞvzy A0ðEeÞ 1þ l1g1

Ee


 �1=2

� Re
Ee

� 


8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð31aÞ

D22 ¼ K þ 4Re
9Ee

þ 4
81E2

e
ð2eyy � exxÞ2 A0ðEeÞ 1þ l1g1

Ee


 �1=2

� Re
Ee

� 


D23 ¼ 2
27E2

e
ð2eyy � exxÞcxy A0ðEeÞ 1þ l1g1

Ee


 �1=2

� Re
Ee

� 


D24 ¼ 4l2

27E2
e
ð2eyy � exxÞvzx A0ðEeÞ 1þ l1g1

Ee


 �1=2

� Re
Ee

� 


D25 ¼ 4l2

27E2
e
ð2eyy � exxÞvzy A0ðEeÞ 1þ l1g1

Ee


 �1=2

� Re
Ee

� 


8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð31bÞ

D33 ¼ Re
3Ee

þ c2xy
9E2

e
A0ðEeÞ 1þ l1g1

Ee


 �1=2

� Re
Ee

� 


D34 ¼ 2l2

9E2
e
cxyvzx A0ðEeÞ 1þ l1g1

Ee


 �1=2

� Re
Ee

� 


D35 ¼ 2l2

9E2
e
cxyvzy A0ðEeÞ 1þ l1g1

Ee


 �1=2

� Re
Ee

� 


8>>>>>>>>><
>>>>>>>>>:

ð31cÞ

D44 ¼ 2l2Re
3Ee

þ 4l4

9E2
e
v2
zx A0ðEeÞ 1þ l1g1

Ee


 �1=2

� Re
Ee

� 


D45 ¼ 4l4

9E2
e
vzxvzy A0ðEeÞ 1þ l1g1

Ee


 �1=2

� Re
Ee

� 


D55 ¼ 2l2Re
3Ee

þ 4l4

9E2
e
v2
zy A0ðEeÞ 1þ l1g1

Ee


 �1=2

� Re
Ee

� 


8>>>>>><
>>>>>>:

ð31dÞ

where l ¼ lcs.

4. Finite element computation for crack tip fields

4.1. Choice of elements

Many researchers have found that the choice of element for gradient plasticity is complicated and in
particular, quite sensitive to details of the constitutive relation. Xia and Hutchinson (1996) have discussed
some choices of finite elements for strain gradient plasticity with the emphasis on plane strain cracks.
Several elements have been developed for the phenomenological theory of strain gradient plasticity to
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investigate the crack tip field, micro-indentation experiments and stress concentrations around a hole. A
review of these elements can be found in the paper by Shu et al. (1999).

In order to consider the strain gradient, the constant strain element is excluded since there is no strain
gradient in this kind of element. For the two-dimensional case, such as the problem of plane strain and the
axis-symmetry, second-order element can be used, such as the eight-node and nine-node elements.

We have used two kinds of elements to study the plane strain crack tip fields. One is the eight-node
isoparametric element and the other is the nine-node isoparametric element. Results for these two kinds of
elements are almost the same so only the results for nine-node element are given below. The displacement
and rotation vectors in the element are interpolated through the shape function, whereas the strain and the
rotation gradient tensors in the element are then obtained via Eqs. (1) and (6). This element is only suitable
for solids with vanishing higher-order stress traction on the surface. For example, the element has worked
very well in the fracture analysis of strain gradient plasticity (Wei and Hutchinson, 1997; Chen et al., 1999),
where the higher-order stress tractions vanish on the crack face and on the remote boundary. This element
also works well in the study of micro-indentation experiments (Huang et al., 2000b) because the higher-
order stress tractions are zero on the indented surface. Since the new strain gradient theory does not include
higher-order stress and higher-order stress tractions, these kinds of elements will work well in the present
study of plane strain crack tip field as discussed in the next section.

4.2. Computation model

The plane strain crack tip field is studied in the present paper. The domain for the finite element analysis
is a circle, whose central point is at the crack tip and the radius is R ¼ 1000lcs as shown in Fig. 1, in which
we take R ¼ 3000 lm as the circle radius, i.e. the reference material parameter lcs ¼ 3:0 lm. It should be
pointed out that the internal material length lcs has been used to normalize r and KI in the following text
and does not appear explicitly in the non-dimensional stress distributions. Here lcs ¼ 3:0 lm is only a
length related with the computation domain. The classical K fields are imposed on the outer boundary. For
the small scale yielding configuration, only the upper half geometry is made discrete by the symmetry of the
problem. A fine mesh is used near the crack tip, around which the smallest element size is on the order of
10�3lcs, and effort is made to ensure elements having aspect ratio close to 1. The computation model is
shown in Fig. 1. In the present paper, several kinds of size ratios of neighboring element are computed and

Fig. 1. Finite element mesh for crack tip problem using nine-node isoparametric element with R ¼ 1000lcs.
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it is found that the ratio has little influence on the calculating results. In the next section all the results are
calculated adopting 1.2 of the neighboring element size ratio.

4.3. Boundary conditions

In the above section it is mentioned that the classical K field is imposed on the outer boundary and the
detail normal and tangent stress tractions are as follows,

rrr ¼ KIffiffiffiffiffi
2pr

p cos h
2
ð1þ sin2 h

2
Þ

rrh ¼ KI

2
ffiffiffiffiffi
2pr

p cos h
2
sin h

(
ð32Þ

where KI is the stress intensity factor of mode I crack tip field. ðr; hÞ is the polar coordinate that the origin
point is located at the crack tip.

The couple stress tractions on the outer boundary are taken as

mrr ¼ mhr ¼ 0 ð33Þ

On the boundary of the symmetric axis ðx > 0; y ¼ 0Þ, the displacement uy , the micro-rotation xz and
shear stress sxy are vanish.

On the crack surface, the stress tractions and the couple stress tractions are all vanish.

4.4. Numerical results

Numerical solutions obtained using the finite element methods are presented in this section. The nine-
noded isoparametric element with three freedoms for each node is used and the mesh is shown in Fig. 1. The
results presented below were computed with rY =E ¼ 0:2%, m ¼ 0:3, R ¼ 1000lcs, although calculations were
also carried out for other values of these parameters.

If the internal lengths lcs and l1 are zero, the strain gradient theory degenerates to be the classical theory.
Fig. 2 shows the normalized effective stresses, re=rY , at polar angle h ¼ 0� versus the normalized distance
r=lcs ahead of the crack tip for the classical plasticity deformation theory (without strain gradient effects)
and the plastic hardening exponent takes n ¼ 0:2. Theoretical results of classical HRR solution and K field
solution are shown in Fig. 2 also. The remotely applied stress intensity is KI=ðrY l1=2cs Þ ¼ 20. Here, it must be
noted that during the finite element calculation we take lcs ¼ l1 ¼ 0 which means that no strain gradient
effects are considered, lcs in the normalized distance r=lcs is not zero but the same as that used in the
computation model, i.e. lcs ¼ 3 lm. While the curves of the theoretical results are drawn lcs ¼ 3 lm is also
used to normalized the distance. From Fig. 2 we can find that the slope of near tip field is almost
�n=ðnþ 1Þ, which is consistent with the theoretical HRR field. Remote from the crack tip, the field tends to
be K field with the slope to be �1=2. The calculation results are consistent with the theoretical results,
which proves that the present calculation result (without strain gradient effects) is right.

In order to compare the results with those in Jiang et al. (2001), we first take the relation between the
internal material lengths as l1 ¼ lcs.

Fig. 3 shows the normalized effective stresses, re=rY at polar angle h ¼ 0� versus the normalized distance
r=lcs for the present strain gradient theory with the plastic hardening exponent n ¼ 0:2 and l1 ¼ lcs. The
remotely applied stress intensity factor is KI=ðrY l1=2cs Þ ¼ 20. The plastic zone size is a bit more than 10lcs,
which is almost the same as that in Jiang et al. (2001) with the same stress intensity factor. The corre-
sponding stress distribution in classical plasticity (without strain gradient effects) is also shown in Fig. 3. It
is observed that, outside the plastic zone, both the present strain gradient theory and the classical plasticity
theory give the same straight line with slope �1=2, which corresponds to the elastic K field. The predictions
of the present strain gradient theory and the classical plasticity theory are almost the same within the plastic
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zone at a distance larger than 0:3lcs to the crack tip, which also agrees with the estimates in Jiang et al.
(2001) and Xia and Hutchinson (1996). The physical reasonability can be found in Jiang et al. (2001). At a
distance of 0:1lcs to the crack tip, the effective stress given by the present strain gradient theory is much
higher than that in classical plasticity and the absolute value of the slope is larger than that for the HRR

Fig. 3. Distributions of normalized effective stresses re=rY ahead of the crack tip at polar angle h ¼ 0� versus the normalized distance

r=lcs with the external loading KI=ðrY l1=2cs Þ ¼ 20 and n ¼ 0:2, l1 ¼ lcs for the present strain gradient theory and the classical plasticity

deformation theory.

Fig. 2. Distributions of normalized effective stresses re=rY ahead of the crack tip at polar angle h ¼ 0� versus the normalized distance

r=lcs for the conventional plasticity deformation theory with external loading KI=ðrY l1=2cs Þ ¼ 20. Comparisons between the present

calculation result and the theoretical results of HRR solution and K field solution are also shown.
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field, which means that the stress singularity around the crack tip in the present strain gradient theory is
stronger than that of the HRR field. The exponent of the stress singularity nearly tends to be �1=2. Similar
results are obtained by Jiang et al. (2001). From Fig. 3 we can find that there is a strain gradient dominated
zone near the crack tip, outside this kind of zone, it is a plasticity field and then K field.

The normalized stress components rrr=rY and rhh=rY at polar angle h ¼ 0� versus the non-dimensional
distance to the crack tip r=lcs are shown in Fig. 4 for both the present strain gradient theory and the
classical plasticity theory with the hardening exponent n ¼ 0:2 and l1 ¼ lcs. The remotely applied stress
intensity factor is KI=ðrY l1=2cs Þ ¼ 20. The stress components around the crack tip predicted by the present
theory and the classical plasticity theory are different within a distance of 0:1lcs and the former is larger than
the latter. From Fig. 4 we can find that the transition is clearly observed from the remote elastic K field to a
plasticity field, then to the strain gradient dominated field.

According to Begley and Hutchinson (1997) and Stolken and Evans (1998), the relation between the
intrinsic material lengths lcs and l1 basically is l1 
 0:1lcs.

Fig. 5 shows the normalized effective stresses, re=rY , at polar angle h ¼ 0� versus the normalized distance
r=lcs for the present strain gradient theory with the plastic hardening exponent n ¼ 0:2 and l1 ¼ 0:1lcs. The
remotely applied stress intensity factor in Fig. 5 is KI=ðrY l1=2cs Þ ¼ 20. It must be noted that the relation
between the intrinsic lengths l1 and lcs is different from that in Fig. 3. The plastic zone size is a bit more than
10lcs. The corresponding stress distribution in classical plasticity (without strain gradient effects) is also
shown in Fig. 5. Outside the plastic zone, it is observed that both the present strain gradient theory and the
classical plasticity theory give the same straight line with slope �1=2, which corresponds to the elastic K
field. The predictions of the present strain gradient theory and the classical plasticity theory are almost the
same within the plastic zone at a distance larger than 0:06lcs to the crack tip. At a distance of 0:03lcs to the
crack tip, the effective stress given by the present strain gradient theory is much higher than that in classical
plasticity and the absolute value of the slope is larger than that for the HRR field, which means that the
stresses around the crack tip in the present strain gradient theory are more singular than the HRR field. The
order of the stress singularity nearly tends to be �1=2. From Fig. 5 we can also find that there is a strain

Fig. 4. Normalized stress components rrr=rY , rhh=rY distributions versus the normalized distance r=lcs with the external loading

KI=ðrY l1=2cs Þ ¼ 20 and n ¼ 0:2, l1 ¼ lcs for the present strain gradient theory and the classical plasticity theory.
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gradient dominated zone near the crack tip, remote from the crack tip, it is a plasticity field and then K field
dominates the outer field.

In Fig. 6, materials with various hardening exponents are calculated and the effects of the hardening
exponents on the effective stress distribution ahead of the crack tip are shown in Fig. 6. The remotely

Fig. 5. Distributions of normalized effective stresses re=rY ahead of the crack tip at polar angle h ¼ 0� versus the normalized distance

r=lcs with the external loading KI=ðrY l1=2cs Þ ¼ 20 and n ¼ 0:2, l1 ¼ 0:1lcs for the present strain gradient theory and the classical plasticity

deformation theory.

Fig. 6. Normalized effective stresses re=rY distributions versus the normalized distance r=lcs for various hardening exponents with the

external field KI=ðrY l1=2cs Þ ¼ 10 and l1 ¼ 0:1lcs for the present strain gradient theory.
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applied stress intensity factor is KI=ðrY l1=2cs Þ ¼ 10 also and l1 ¼ 0:1lcs. The hardening exponents are n ¼ 0:1,
0.2, 0.33. One can find from Fig. 6 that near the crack tip there is a domain dominated by the strain
gradient, the slope is hardly related to the hardening exponents and nearly the same as that of classical K
field. Remotely from the crack tip, there are a plastic field and classical K field. With the same remotely
stress intensity factor and different hardening exponents, the plastic domain size is almost the same but with
different slope, the classical K fields are the same and have no relation to the hardening exponents. The
larger the hardening exponents, the higher the effective stress near the crack tip in the strain gradient
dominated domain with the same external stress field.

Fig. 7 shows the normalized effective stress re=rY at polar angle h ¼ 0�, versus the non-dimensional
distance to the crack tip r=lcs for four levels of remotely applied stress intensity factor, KI=ðrY l1=2cs Þ ¼ 5, 10,
20 and the other parameters are identical. From Fig. 7, one can find that the size of the plastic zone in-
creases quickly while the remotely applied stress intensity factor is increasing but the scale increase of near
tip strain gradient dominated zone is not obvious and very slow, which shows that the strain gradient
dominated zone is not sensitive to the outer K field and almost in the order of the intrinsic material length.
From Fig. 7 it is easy to find that all curves approach to another set of straight lines, at the small distance to
the crack tip, and the slope of the set of straight lines tends to be the same as that of classical K field. All
these phenomena can be found also in Jiang et al. (2001), which analyzed the crack tip field with MSG
theory (Gao et al., 1999).

Above calculation results seem to be consistent with the SSV model of Suo et al. (1993). The SSV model
assumes that there is an elastic zone of height D above the interface in the metal film rightly near the in-
terface crack tip. The size of height D is the same as the dislocation spacing. Plastic deformation occurs
outside the elastic zone. The SSV model provides a reasonable picture for cleavage fracture in interface
between a ductile metal film and thick oxide substrate.

The present calculation results confirm that the exponent of the stress singularity nearly tends to be
�1=2, in despite of different plastic hardening exponents were simulated. It means that immediately near
the crack tip, there is an elastic dominated zone.

Fig. 7. Distribution of normalized effective stress re=rY versus the normalized distance r=lcs for different loading:

KI=ðrY l1=2cs Þ ¼ 5; 10; 20. The hardening exponent is n ¼ 0:2 and l1 ¼ 0:1lcs.
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5. Discussion

This paper presents a study of plane strain mode I crack tip field at micro-scale based on the new strain
gradient theory. For remotely imposed classical K fields, the full field solutions are obtained numerically for
elastic–plastic materials with strain gradient effects. It is found that the stresses near the crack tip are
significant influenced by strain gradient effects. For mode I fracture under small scale yielding condition,
transition from the remote classical K field to the near tip strain gradient dominated zone goes through a
plasticity field. The singularity exponent in the strain gradient dominated domain is independent of the
material plastic hardening exponents and is almost �1=2.

At a distance that is much larger than the dislocation spacing such that continuum plasticity is expected
to be applicable. The near tip stresses predicted by the new strain gradient theory are significantly higher
than that in HRR field. The increase in the near tip stress level provides an explanation to the experimental
observation of cleavage fracture in ductile materials (Elssner et al., 1994).

While the relation of the two length scales is l1 ¼ lcs, the numerical results are almost the same as that in
Jiang et al. (2001), which proves that the new strain gradient seems to be capable of bridging the gap
between the macroscopic cracking and atomic fracture also.
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